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 Reactive model

* Predictive model

* Algorithms and examples
« Conclusion
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Cloud computing can improve
scalability and availability

How The Weather Company survived a
1,000% traffic spike during
Hurricane Sandy

Source: http://venturebeat.com/2012/11/02/how-the-weather-company-survived-a-1000-traffic-spike-during-hurricane-sandy/
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Large Google computer cluster trace
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Source: C. Reiss et co, Towards understanding heterogeneous clouds at scale: Google trace analysis. 2012
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Background

» Traditional Datacenters
4 Fixed and dedicated infrastructure -
Expensive and inefficient
4 Unexpected workload peaks =
Performance degrade
1 QoS critical services cater to peak
workloads - under-utilized infrastructure

> Public laaS Cloud Environments

O Pay-per-use - Cost effective
[ On demand - Efficient
 Elastic > Scalable

A 11/28/2012

Aalto University .o 5
School of Science © Y Ra|V|O



(m Front-End @ Business Logic O Back-End |

u u 120
Cloud migration 3, 0
25 80
58 60

§5 40 —
2 20

= ,
1 2 3 4 5
Applications

=

ACL = Access Control List

[=—————
frant

Dota Center -~ L e

Dota Lenter

Source: M. Hajjat et co, Cloudward Bound: Planning for Beneficial Migration of Enterprise Applications to the Cloud, 2010
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Load balancing

Front End

Virtual Infrastructure Manager
Open Nebula

OpenMNebula Drivers

EC2 Drivers

Storage, Virtualization, Networ

Limited Capacity of
Virtualized Infra

Unlimited Capacity of
Virtualized Infrastrycture

Private Cloud

Public Cloud
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Auto scaling

» Auto-scaling refers to dynamically adapting the
infrastructure by scaling up/down of resources based
on the incoming workload traffic pattern

» Resource controller must
L Monitor
O Analyze
O Act

» Metrics that trigger the infrastructure changes are
termed as “Key Performance Indicators” (KPI)

» KPI typically, could be
QCPU/Memory usage
dDisk I/O
ONetwork /O
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Architecture
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Classification

» Resource controllers can be broadly
classified in two types
1. Simple reactive resource controller (Reactive)

O Detect changes in workload pattern and react to
changes after the event occurs

O Suitable for services with predictable workload
patterns

O Unreliable for QoS critical services

2. Look ahead resource controller (Predictive)

O Predict/forecast changes in workload based on a
recent history and react before the event occurs

O Can cater to variable and unpredictable workloads

 Efficiency largely depends on the prediction
algorithm
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Reactive model

> Detect excess workload and scale resources
accordingly

» Existing infrastructure must cater to the excess load
until newly launched resources are operational

» VM launch times are non-trivial. Launch time for an
Amazon EC2 Large instance is 70-80 seconds (at
least 3-4 minutes for enterprise application servers)

» Services with a stringent SLA may have adverse
effect

> Suitable for non-critical services

A 11/28/2012

Aalto University - 1
School of Science © Y Ra|V|O



Predictive model

» Model the incoming workload pattern

» Based on a recent history of workload data, predict
(forecast) the future workload

» Resources are scaled before occurrence of the event
» Suitable for performance/latency critical services

» Most useful for variable incoming traffic and
unpredictable workload patterns

» Example use cases: Telecom components, online
ticketing services, e-commerce applications etc.
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Moving averages model

» Forecast is based on the most recent observations
» More than prediction, this technique is an estimation
process
» Represented by the equation:

X(t) = ( X(t-1) + X(t-2) + ... + X(t-k) ) / k
» Value of k varies with the time series.
» Often, only the most recent observations are considered
» A slightly advanced version of MA model, is the
weighted moving averages model
» Data observations are assigned weights in decreasing
order
» Dampens the peaks, smoothens the valleys
» Simplistic estimation method, not very accurate
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Algorithms

* Moving Average (MA)

« Exponential Smoothing

* Auto-Regressive Moving Average (ARMA)
* ARIMA (Integrated)

 ARFIMA (Fractional)

Source: P. A. Dinda and D.R. O’ Hallaron: Host Load Prediction Using Linear Models, 2000
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MA model: case SMSC

Processing Time vs Load
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Exponential Smoothing: case SMSC

Processing Time vs Load
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ARMA: Case SMSC - one day
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Hourly SMS message traffic
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ARMA: Case SMSC - one week
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Conclusion and Future Work

» Conclusion
Reactive auto-scaling approach is not very
feasible for QoS critical services
dUnpredictable workload patterns and variable
workloads can degrade the system performance
dWorkload modeling and predictive auto-scaling
are imminent for latency sensitive applications

» Future Work
Explore alternative approaches and test the
performance implications
dExtend the approach to other use cases

L Game theory: Nash Equilibrium (NE)
John Nash: See movie: A Beautiful Mind
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